Fn isomorphic to $A(V)$

Prepared by

Dr. A.Lourdusamy M.Sc., M.Phil., B.Ed., Ph.D.

Associative Professor in mathematics,

St.Xavier's College (Autonomous),

Palayamkottai-627002.

Ref: Topics in Algebra By I.N. Herstein

Fn isomorphic to $A(V)$

Theorem:The set Fn of all nxn matrices over
F is an algebra over F. If V is an $n-$ dimensional vector space over F then $A(V)$ and $F n$ are isomorphic as algebras over F

Proof: \quad Given: $\operatorname{dim}(\mathrm{V})=\mathrm{n}$ where V is vector space over F
$\Rightarrow \operatorname{dim}[\mathrm{A}(\mathrm{V})]=\mathrm{n}^{2}$
Let $\mathrm{T} \in \mathrm{A}(\mathrm{V})$
Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2},-\cdots--\mathrm{v}_{\mathrm{n}}\right\}$ be a fixed basis of V
Now, $\mathrm{v}_{\mathrm{i}} \mathrm{T}$ is uniquely expressible as a linear combination of the basis elements $\quad \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$
$\Rightarrow \mathrm{v}_{\mathrm{i}} \mathrm{T}=\sum_{j=1}^{n} \mathrm{a}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}} \quad(\mathrm{i}=1, \ldots \mathrm{n}) \rightarrow(\mathrm{i})$

So each $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ has associated with it a unique matrix

$$
\mathrm{m}(\mathrm{~T})=\left(\begin{array}{lll}
a_{11} & a_{12} & \ldots a_{1 n} \\
a_{21} & a_{22} & \ldots a_{2 n} \\
\vdots & & \\
a_{n 1} & a_{n 2} & \ldots a_{n n}
\end{array}\right)=\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{nxn}} \text { over } \mathrm{F} .
$$

This $m(T)$ is called the matrix of the linear Transformation $T \in A(V)$ relative to the basis $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ of V

Conversely if $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ is a given nxn matrix over F . Then, for a given basis $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ of V , if we define $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ by $\mathrm{v}_{\mathrm{i}} \mathrm{T}=\sum_{\mathrm{j}=1}^{n} \mathrm{a}_{\mathrm{ij}} \mathrm{V}_{\mathrm{j}}$, $(\mathrm{i}=1$ to n$)$, then T becomes a Linear
Transformation on V.
Let, $\mathrm{F}_{\mathrm{n}}=\left\{\left(\mathrm{a}_{\mathrm{ij}}\right)_{\mathrm{nxn}} / \mathrm{a}_{\mathrm{ij}} \in \mathrm{F}\right\}$
$\operatorname{Let}\left(a_{\mathrm{ij}}\right),\left(\mathrm{b}_{\mathrm{ij}}\right) \in \mathrm{F}_{\mathrm{n}}$.
Then $\left(a_{\mathrm{ij}}\right)=\left(b_{\mathrm{ij}}\right)$ iff $\mathrm{a}_{\mathrm{ij}}=b_{\mathrm{ij}} \forall \mathrm{i}, \mathrm{j}$
Now, consider the mapping
$\mathrm{A}(\mathrm{V}) \rightarrow \mathrm{F}_{\mathrm{n}}$ defined by $\quad \mathrm{T} \rightarrow \mathrm{m}(\mathrm{T})=\left(\mathrm{a}_{\mathrm{ij}}\right) \rightarrow(2)$
This is a one - one mapping of $A(V)$ onto F_{n}.
\Rightarrow we can define + ,multiplication, scalar multiplication on F_{n}, since $A(V)$ is an algebra.
(i) $\underline{\text { Addition }} \underline{\underline{i n}} \underline{F}_{\underline{n}}$

Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right) \& \mathrm{~B}=\left(\mathrm{b}_{\mathrm{ij}}\right)$ be element in F_{n}. Suppose, further that, under the mapping (2),

$$
\mathrm{T} \mapsto \mathrm{~A} \& \mathrm{~S} \mapsto \mathrm{~B} .
$$

Then, $\mathrm{v}_{\mathrm{i}} \mathrm{T}=\sum_{j=1}^{n} \mathrm{a}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}}$ \&

$$
\mathrm{v}_{\mathrm{i}} \mathrm{~S}=\sum_{j=1}^{n} \quad \mathrm{~b}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}}
$$

so that $A=m(T) \& B=m(S)$
Now, by the definition of addition of Linear transformation it follows that, $\mathrm{v}_{\mathrm{i}}(\mathrm{T}+\mathrm{S})=\mathrm{v}_{\mathrm{i}} \mathrm{T}+\mathrm{v}_{\mathrm{i}} \mathrm{S}$

$$
=\sum a_{i j} v_{j}+\sum b_{i j} v_{j}
$$

\therefore we see that under the mapping (2)
$\mathrm{T}+\mathrm{S} \mapsto\left(\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}\right)$,
we define addition in F_{n} as follows:

$$
\left(\mathrm{a}_{\mathrm{ij}}\right)+\left(\mathrm{b}_{\mathrm{ij}}\right)=\left(\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}\right) \longrightarrow(3) \quad \Rightarrow \mathrm{m}(\mathrm{~T})+\mathrm{m}(\mathrm{~S})=\mathrm{m}(\mathrm{~T}+\mathrm{S})
$$

(ii) Multiplication in \underline{F}_{n}

By the definition of a product of linear transformation in $A(V)$, we have.
$\mathrm{v}_{\mathrm{i}}(\mathrm{TS})=\left(\mathrm{v}_{\mathrm{i}} \mathrm{T}\right) \mathrm{S}$
$=\left(\sum_{k} \mathrm{a}_{\mathrm{ik}} \mathrm{V}_{\mathrm{k}}\right) \mathrm{S}$
$=\sum_{k} \mathrm{a}_{\mathrm{ik}}\left(\mathrm{v}_{\mathrm{k}} \mathrm{S}\right)$
$=\sum_{k} \mathrm{a}_{\mathrm{ik}}\left(\sum_{j} \mathrm{~b}_{\mathrm{kj}} \mathrm{v}_{\mathrm{j}}\right)$
$\Rightarrow \mathrm{v}_{\mathrm{i}}(\mathrm{TS})=\sum_{j}\left(\sum_{k} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}\right) \mathrm{v}_{\mathrm{j}} \quad$ [By rearranging the order of summation]
Hence under the mapping (2),
$\therefore \mathrm{TS} \mapsto\left(\sum_{k} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}\right)$
Accordingly we definition multiplication in F_{n} as follows:
$\left(\mathrm{a}_{\mathrm{ij}}\right)\left(\mathrm{b}_{\mathrm{ij}}\right)=\left(\sum_{k} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}\right)-----(4)$
i.e., $m(T) \cdot m(S)=m(T S)$
(iii) Scalar multiplication in $\mathrm{F}_{\underline{n}}$

If $c \in F$, we have by the definition of scalar multiplication in $A(V)$, $\mathrm{v}_{\mathrm{i}}(\mathrm{cT})=\mathrm{c}\left(\mathrm{v}_{\mathrm{i}} \mathrm{T}\right)$
$=c\left[\sum_{j} a_{i j} v_{j}\right]$
$=\sum_{j}\left(c_{i j}\right) v_{j}$
Accordingly we define scalar multiplication in F_{n} as follows:

$$
c\left(a_{\mathrm{ij}}\right)=\left(c \mathrm{a}_{\mathrm{ij}}\right) \cdots-\cdots---(5)
$$

ie) $\mathrm{m}(\mathrm{cT})=\mathrm{cm}(\mathrm{T})$

We have now defined addition multiplication and scalar multiplication in F_{n} in such a way that, all of these operations are preserved under the mapping (2)

That is, if under this mapping $\mathrm{T} \mapsto \mathrm{m}(\mathrm{T}) \& \mathrm{~S} \mapsto \mathrm{~m}(\mathrm{~S})$

$$
\begin{aligned}
& \text { then, } \quad \mathrm{T}+\mathrm{S} \mapsto \mathrm{~m}(\mathrm{~T}+\mathrm{S}) \quad=\mathrm{m}(\mathrm{~T})+\mathrm{m}(\mathrm{~S}) \\
& \mathrm{TS} \mapsto \mathrm{~m}(\mathrm{TS})=\mathrm{m}(\mathrm{~T}) \mathrm{m}(\mathrm{~S}) \\
& \mathrm{cT} \mapsto \mathrm{~m}(\mathrm{cT}) \quad=\mathrm{cm}(\mathrm{~T}) \quad \text { for } \mathrm{C} \in \mathrm{~F}
\end{aligned}
$$

Thus we have shown that the mapping (equation (2) is an isomorphism of $\mathrm{A}(\mathrm{V})$ onto F_{n} as algebras)

Hence the set F_{n} of all nxn matrices over F is an algebra over F. If V is an n - dimensional vector space over F , then $\mathrm{A}(\mathrm{V})$ and F_{n} are isomorphic as algebras over F .

Definition:

(i) Zero Matrix:

* Zero matrix is a matrix all of whose entries are zero.
* The Zero element of an algebra F_{n} is the nxn zero matrix.
(ii) Unit matrix:
- Unit matrix is the matrix whose diagonal elements are one and whose entries elsewhere are zero.
- We write it as 'I'.
- The unit element of F_{n} under multiplication is I.
(iii) Scalar matrix:

If $\mathrm{c} \in \mathrm{F}$ then, cI is called Scalar matrix.

Example:

$$
\mathrm{cI}=\left(\begin{array}{lll}
c & \mathrm{O} & \mathrm{O} \\
\mathrm{O} & \subset & \mathrm{O} \\
\mathrm{O} & \mathrm{O} & \mathrm{c}
\end{array}\right)
$$

(iv) Triangular matrix:

The matrix $A \in F_{n}$ is called triangular if all the entries above the main diagonal are zero (0).

If all the entries below the main diagonal are zero, the matrix is also called Triangular.
(v) Invertible (or) Regular (or) non - Singular Matrix:

The matrix $A \in F_{n}$ is called invertible or non - singular if there exists $B \in F_{n}$ such that $A B=B A=I$ the matrix B is called the inverse of A and $A^{-1}=B$

Note:
Since $A(V) \approx F_{n}, T \in A(V)$ is invertible iff $m(T)$ has inverse in F_{n}.

Theorem:

Let V be a vector space of dimension n over F and let $\mathrm{T} \in \mathrm{A}(\mathrm{V})$. If $\mathrm{m}_{1}(\mathrm{~T})$ and $\mathrm{m}_{2}(\mathrm{~T})$ are the matrices of T , relative to two bases $\left\{\mathrm{v}_{1}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{w}_{1}, \ldots ., \mathrm{w}_{\mathrm{n}}\right\}$ of V , respectively. There is an invertible matrix C in F_{n} such that $\mathrm{m}_{2}(\mathrm{~T})=\mathrm{Cm}_{1}(\mathrm{~T}) \mathrm{C}^{-1}$. Proof:

Given, $\operatorname{dim}(\mathrm{V})=\mathrm{n} ; \mathrm{T} \in \mathrm{A}(\mathrm{V})$; $\mathrm{m}_{1}(\mathrm{~T})$ is the matrix corresponding to $\left\{\mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$ $\mathrm{m}_{2}(\mathrm{~T})$ is the matrix corresponding to $\left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$
Let $\mathrm{m}_{1}(\mathrm{~T})=\left(\mathrm{a}_{\mathrm{ij}}\right)$ where $\mathrm{v}_{\mathrm{i}} \mathrm{T}=\sum_{j=1}^{n} \quad \mathrm{a}_{\mathrm{ij}} \mathrm{v}_{\mathrm{j}}$
Let $\mathrm{m}_{2}(\mathrm{~T})=\left(\mathrm{b}_{\mathrm{ij}}\right)$ where $\mathrm{w}_{\mathrm{i}} \mathrm{T}=\sum_{\mathrm{j}=1}^{n} \mathrm{~b}_{\mathrm{ij}} \mathrm{w}_{\mathrm{j}}$
We define
$\mathrm{S}: \mathrm{V} \rightarrow \mathrm{V}$ by $\mathrm{v}_{\mathrm{i}} \mathrm{S}=\mathrm{w}_{\mathrm{i}}(\mathrm{i}=1$ to n$)$ then S is a Linear Transformation on V .

Claim: S is onto
Let $\mathrm{y} \in \mathrm{V}$ (co domain)

$$
\Rightarrow \mathrm{y}=\mathrm{c}_{1} \mathrm{~W}_{1}+\mathrm{c}_{2} \mathrm{~W}_{2}+\cdots+\mathrm{c}_{\mathrm{n}} \mathrm{~W}_{\mathrm{n}}
$$

Let $\quad x=c_{1} V_{1}+c_{2} V_{2}+\cdots---c_{n} v_{n}$
Then $x \in V$
Now xS $=\left(c_{1} V_{1}+----+c_{n} V_{n}\right) S$.

$$
\begin{aligned}
& =c_{1}\left(v_{1} S\right)+\cdots--+c_{n}\left(v_{n} S\right) \\
& =c_{1} W_{1}+c_{2} W_{2}+\cdots--+c_{n} W_{n}=y
\end{aligned}
$$

.: for all $\mathrm{y} \in \mathrm{V}$ there exists $\mathrm{x} \in \mathrm{V}$ such that, $\mathrm{xS}=\mathrm{y}$
$\therefore S$ is onto $\Rightarrow S$ is invertible
$\Rightarrow \mathrm{S}^{-1}$ exists

$$
\begin{aligned}
\text { Now, } w_{i} T & =\sum_{j=1}^{n} b_{i j} w_{j} \\
\left(v_{i} S\right) T & =\sum_{j=1}^{n} b_{i j}\left(v_{j} S\right) \quad\left(\text { Since } w_{i}=v_{i j} S\right) \\
\Rightarrow v_{i}(S T) & =\sum_{j=1}^{n}\left(b_{i j} v_{j}\right) S \quad[\because \text { S is linear }] \\
v_{i}\left(S T S^{-1}\right) & =\sum_{j=1}^{n} b_{i j} v_{j} \quad\left(\because S S^{-1}=I\right) \\
\Rightarrow m_{1}\left(S T S^{-1}\right) & =\left(b_{i j}\right)=m_{2}(T)
\end{aligned}
$$

We know that
$\mathrm{T} \mapsto \mathrm{m}_{1}(\mathrm{~T})$ is an isomorphism of $\mathrm{A}(\mathrm{V})$ onto F_{n}. i.e., $\mathrm{A}(\mathrm{V}) \approx \mathrm{F}_{\mathrm{n}}$.
$\therefore \mathrm{m}_{1}(\mathrm{~S}) \mathrm{m}_{1}(\mathrm{~T}) \mathrm{m}_{1}\left(\mathrm{~S}^{-1}\right)=\mathrm{m}_{2}(\mathrm{~T})$

$$
\Rightarrow \quad \mathrm{Cm}_{1}(\mathrm{~T}) \mathrm{C}^{-1}=\mathrm{m}_{2}(\mathrm{~T})
$$

Where $C=m_{1}(S) \in F_{n}$ is invertible.

Hence the theorem is proved. The matrix $\mathrm{C}=\mathrm{m}_{1}(\mathrm{~S})$ is called the matrix of the change of basis. (2)

Definition:
Invariant subspace.
Let V be n - dimensional vector space. over F . Let W be a subspace of V \& let $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ then W is invariant under T if $\mathrm{WT} \subseteq \mathrm{W}$

Lemma:

If the subspace W of V is invariant under $\mathrm{T} \in \mathrm{A}(\mathrm{V})$, then T induces a linear transformation \bar{T} on the quotient space V / W defined by $(\mathrm{v}+\mathrm{W}) \bar{T}=\mathrm{vT}+\mathrm{W}$

If $\mathrm{p}_{1}(\mathrm{x})$ is the minimal polynomial of \bar{T} over F , and if $\mathrm{p}(\mathrm{x})$ is that for T then, $\mathrm{p}_{1}(\mathrm{x}) \mid \mathrm{p}(\mathrm{x})$.

Proof

Given: W is an invariant subspace of V and $\mathrm{T} \in \mathrm{A}(\mathrm{V})$

$$
\Rightarrow \mathrm{W} \mathrm{~T} \subseteq \mathrm{~W}
$$

We know that $\mathrm{V} / \mathrm{W}=\{\mathrm{v}+\mathrm{W} / \mathrm{v} \in \mathrm{V}\}$

We know that $\mathrm{T} \in \mathrm{A}(\mathrm{V}) \Rightarrow \mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is Linear Transformation.

$$
\begin{aligned}
& \Rightarrow \mathrm{vT} \in \mathrm{~V} \\
& \Rightarrow \mathrm{vT}+\mathrm{W} \in \mathrm{~V} / \mathrm{W}
\end{aligned}
$$

Define $\bar{T}: \mathrm{V} / \mathrm{W} \rightarrow \mathrm{V} / \mathrm{W}$ by $(\mathrm{v}+\mathrm{W}) \bar{T}=\mathrm{vT}+\mathrm{W} \forall \mathrm{v}+\mathrm{W} \in \mathrm{V} / \mathrm{W}, \mathrm{v} \in \mathrm{V}$

Claim: 1

\bar{T} is well defined
Let $\quad \mathrm{v}_{1}+\mathrm{W}=\mathrm{v}_{2}+\mathrm{W}$
$\Rightarrow \quad \mathrm{V}_{1}-\mathrm{v}_{2} \in \mathrm{~W}$
$\Rightarrow\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \mathrm{T} \in \mathrm{W} \mathrm{T}$
$\Rightarrow\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \mathrm{T} \in \mathrm{W}$
$\Rightarrow \mathrm{v}_{1} \mathrm{~T}-\mathrm{v}_{2} \mathrm{~T} \in \mathrm{~W}$
$\Rightarrow \mathrm{v}_{1} \mathrm{~T}+\mathrm{W}=\mathrm{v}_{2} \mathrm{~T}+\mathrm{W}$
$\Rightarrow\left(\mathrm{v}_{1}+\mathrm{W}\right) \bar{T}=\left(\mathrm{v}_{2}+\mathrm{W}\right) \bar{T}$
Hence \bar{T} is well defined

Claim: 2

T is a linear Transformation on V/W
Let $\mathrm{x}, \mathrm{y} \in \mathrm{V} / \mathrm{W} \Rightarrow \mathrm{x}=\mathrm{v}_{1}+\mathrm{W}$

Now

$$
\begin{array}{rlr}
\mathrm{y} & =\mathrm{v}_{2}+\mathrm{W}, \quad \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{~V} \\
(\mathrm{x}+\mathrm{y}) & \frac{T}{T} & =\left[\left(\mathrm{v}_{1}+\mathrm{W}\right)+\left(\mathrm{v}_{2}+\mathrm{W}\right)\right] \bar{T} \\
& =\left[\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)+\mathrm{W}\right] \bar{T} \\
& =\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right) \mathrm{T}+\mathrm{W} & \quad \text { by def of } \bar{T}] \\
& =\left(\mathrm{v}_{1} \mathrm{~T}+\mathrm{v}_{2} \mathrm{~T}\right)+\mathrm{W} \quad \text { (since Tis linear) } \\
& =\left(\mathrm{v}_{1} \mathrm{~T}+\mathrm{W}\right)+\left(\mathrm{v}_{2} \mathrm{~T}+\mathrm{W}\right) & \quad[\text { by cocet }+] \\
& =\left(\mathrm{v}_{1}+\mathrm{W}\right) \bar{T}+\left(\mathrm{v}_{2}+\mathrm{W}\right) \bar{T} \quad[\text { def of } \bar{T}] \\
& =\mathrm{x} \bar{T}+\mathrm{y} \bar{T}
\end{array}
$$

Let $\lambda \in \mathrm{F}$

$$
\begin{aligned}
&(\lambda \mathrm{x}) \bar{T}=\left(\lambda\left(\mathrm{v}_{1}+\mathrm{W}\right) \bar{T}\right. \\
&=\left(\lambda \mathrm{v}_{1}+\mathrm{W}\right) \bar{T}[\text { scalar in } \mathrm{V} / \mathrm{W}] \\
&=\left(\lambda \mathrm{v}_{1}\right) \mathrm{T}+\mathrm{W}[\text { definition of } \bar{T}] \\
&=\lambda\left(\mathrm{v}_{1} \mathrm{~T}\right)+\mathrm{W}[\because \mathrm{~T} \in \mathrm{~A}(\mathrm{~V})] \\
&=\lambda\left(\mathrm{v}_{1} \mathrm{~T}+\mathrm{W}\right)[\text { by scalar multiplication in } \mathrm{V} / \mathrm{W}] \\
&=\lambda\left(\left(\mathrm{v}_{1}+\mathrm{W}\right) \bar{T}\right) \\
&=\lambda(\overline{\mathrm{x}}) \\
& \therefore \bar{T} \text { is a linear Transformation on } \mathrm{V} / \mathrm{W}
\end{aligned}
$$

Claim: 3 If T satisfies a poly $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ then so does \bar{T}

$$
\begin{aligned}
\text { Let } \mathrm{x}=\mathrm{v}+\mathrm{W} & \in \mathrm{~V} / \mathrm{W} \\
\text { Now, } \mathrm{x}\left(\overline{T^{2}}\right) & =(\mathrm{v}+\mathrm{W})\left(\overline{T^{2}}\right) \\
& =\mathrm{vT}+\mathrm{W} \\
& =(\mathrm{vT}) \mathrm{T}+\mathrm{W} \\
& =(\mathrm{vT}+\mathrm{W}) \bar{T} \\
& =(\mathrm{v}+\mathrm{W}) \bar{T} \bar{T} \\
& =(\mathrm{v}+\mathrm{W})(\bar{T})^{2} \\
& =\mathrm{x}(\bar{T})^{2} \quad \\
\Rightarrow \overline{T^{2}} & =(\bar{T})^{2}
\end{aligned} \quad \forall \mathrm{x} \in \mathrm{~V},
$$

In general $\overline{\overline{T^{k}}=(\bar{T})^{\mathrm{k}}}$ for any non-negative integer k

Let $f(x)=a_{0}+a_{1} x+-\cdots--+a_{m} x^{m}, a_{i} \in F$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}(\mathrm{~T})=\mathrm{a}_{0} \mathrm{I}+\mathrm{a}_{1} \mathrm{~T}+\cdots--+\mathrm{a}_{\mathrm{m}} \mathrm{~T}^{\mathrm{m}} \\
& \Rightarrow \overline{f(T)}=\mathrm{a}_{0} \mathrm{I}+\mathrm{a}_{1} \bar{T}+\mathrm{a}_{2}(\bar{T})^{2}+\cdots-\cdots+\mathrm{a}_{\mathrm{m}}(\bar{T})^{\mathrm{m}}
\end{aligned}
$$

$$
=\mathrm{f}(\bar{T})
$$

Suppose T is satisfies $f(x) \Rightarrow f(T)=0$

$$
\begin{aligned}
& \Rightarrow \overline{f(T)}=0 \\
& \Rightarrow \mathrm{f}(\bar{T})=0
\end{aligned}
$$

$\Rightarrow \bar{T}$ satisfies $\mathrm{f}(\mathrm{x})$
Claim: $4 P_{1}(x)$ divides $p(x)$
Let $\mathrm{p}_{1}(\mathrm{x})$ be the minimal polynomial of \bar{T} over F Let $P(x)$ be the minimal polynomial of T over F Given: $p(x)$ is the minimal polynomial of T
$\Rightarrow \mathrm{p}(\mathrm{T})=0 \& \mathrm{q}(\mathrm{T}) \neq 0$ such that $\operatorname{deg}(\mathrm{q}(\mathrm{x}))<\operatorname{deg}(\mathrm{p}(\mathrm{x}))$
$\Rightarrow \mathrm{p}(\mathrm{T})=0[\because \mathrm{~T}$ satisfies $\mathrm{p}(\mathrm{x}) \Rightarrow \bar{T}$ satisfies $\mathrm{p}(\mathrm{x})]$
$\Rightarrow \mathrm{p}_{1}(\mathrm{x}) \mid \mathrm{p}(\mathrm{x})\left[\because \mathrm{p}_{1}(\mathrm{x})\right.$ is the minimal polynomial of $\bar{T} \&$ $\mathrm{p}(\mathrm{x})$ is a polynomial satisfied by $\bar{T}]$
\qquad x \qquad

Theorem:

$$
\text { If } T \in A(V) \text { has all its eigen values in } F \text { then }
$$

there is basis of V in which the matrix of T is triangular

Proof:

We prove this theorem by induction on $\operatorname{dim}_{\mathrm{F}}(\mathrm{V})$
If $\operatorname{dim}(V)=1$ then $\operatorname{dim}(A(V))=1$ so every element of $A(V)$ is a scalar
The theorem is true for this case.
Now, we assume that the theorem is true for all vector space over F of dimension $\mathrm{n}-1$ \& let V be of dimension n over F .

It is given that $T \in A(V)$ has all its eigenvalues in F
Let $\lambda_{1} \in \mathrm{~F}$ be an eigen value of T
\Rightarrow there exists $\mathrm{v}_{1} \neq 0$ in V such that $\mathrm{v}_{1} \mathrm{~T}=\lambda_{1} \mathrm{~V}_{1}$

$$
\text { Let } \begin{aligned}
W= & \left\{a v_{1} / a \in F\right\} \\
& \Rightarrow W \text { is the subspace whose basis is }\left\{v_{1}\right\} \\
& \Rightarrow \operatorname{dim}(W)=1
\end{aligned}
$$

Claim: W is invariant under T ie, $\mathrm{WT} \subseteq \mathrm{W}$

$$
\begin{aligned}
& \text { Suppose } \mathrm{x} \in \mathrm{~W} \Rightarrow \mathrm{x}=\mathrm{av}_{1,}, \mathrm{a} \in \mathrm{~F} \\
& \text { Now, } x T \in W T \& x T=\left(\mathrm{av}_{1}\right) T \\
& =\mathrm{a}\left(\mathrm{v}_{1} \mathrm{~T}\right) \\
& =\mathrm{a}\left(\lambda_{1} \mathrm{v}_{1}\right) \\
& =\left(\mathrm{a} \lambda_{1}\right) \mathrm{v}_{1} \\
& =\mathrm{bv}_{1} \in \mathrm{~W} \\
& \therefore \mathrm{xT} \in \mathrm{~W} \mathrm{~T} \Rightarrow \mathrm{xT} \in \mathrm{~W} \\
& \Rightarrow \mathrm{WT} \subseteq \mathrm{~W} \Rightarrow \mathrm{~W} \text { is invariant under } \mathrm{T}
\end{aligned}
$$

Def $\bar{V}=\mathrm{V} / \mathrm{W}$
$\Rightarrow \operatorname{dim}(\bar{V})=\operatorname{dim} \mathrm{V}-\operatorname{dim} \mathrm{W}=\mathrm{n}-1$
Then, T induces a linear transformation \bar{T} on \bar{V}
such that, $\mathrm{p}_{1}(\mathrm{x})$ divides $\mathrm{p}(\mathrm{x})[\because$ by lemma $]$ where, $\mathrm{p}_{1}(\mathrm{x})$ is the minimal polynomial of \bar{T} over F \&
$\mathrm{p}(\mathrm{x})$ is the minimal polynomial of T over F
\Rightarrow every root of $\mathrm{p}_{1}(\mathrm{x})$ is also a root of $\mathrm{p}(\mathrm{x})$
$\Rightarrow \bar{T}$ has all its eigen values in F
since T has all its eigen values in F

Now $\operatorname{dim}(\bar{V})=\mathrm{n}-1 \& \bar{T}: \bar{V} \rightarrow \bar{V}$ has all its eigen values in F
So, by induction hypothesis, there exists a basis $\left\{\bar{v}_{2}, \ldots, \bar{v}_{\mathrm{n}}\right\}$ of \bar{V} such that the matrix of \bar{T} is triangular.

$$
\begin{aligned}
& \left.\quad \begin{array}{llllll}
& 3 & \cdots & i & \ldots & n \\
\bar{v}_{2} \\
\bar{v}_{3} \\
\vdots \\
& \bar{v}_{22} \\
a_{32} & a_{33} & \ldots & 0 & \ldots & 0 \\
\bar{v}_{n} \\
a_{i 2} & a_{i 3} & \ldots & a_{i i} & \ldots & 0 \\
a_{n 2} & a_{n 3} & \ldots & a_{n i} & \ldots & a_{n n}
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\bar{v}_{2} \bar{T} & =a_{22} \bar{v}_{2} \\
\bar{v}_{3} \bar{T} & =a_{32} \bar{v}_{2}+a_{33} \bar{v}_{3} \\
\vdots \\
\Rightarrow & \tag{1}\\
\bar{v}_{i} \bar{T} & =a_{i 2} \bar{v}_{2}+a_{i 3} \bar{v}_{3}+\ldots+a_{i i} \bar{v}_{i} \\
\vdots & \\
\bar{v}_{n} \bar{T} & =a_{n 2} \bar{v}_{2}+a_{n 3} \bar{v}_{3}+\ldots+a_{n n} \bar{v}_{n}
\end{array}\right\}
$$

Now,

$$
\begin{aligned}
& \bar{v}_{2} \bar{T}=\mathrm{a}_{22} \bar{v}_{2} \\
\Rightarrow & \left(\mathrm{v}_{2}+\mathrm{w}\right) \bar{T}=\mathrm{a}_{22}\left(\mathrm{v}_{2}+\mathrm{w}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{v}_{2} \mathrm{~T}+\mathrm{w}=\mathrm{a}_{22} \mathrm{v}_{2}+\mathrm{W}$

$$
\begin{aligned}
& \mathrm{v}_{2} \mathrm{~T}-\mathrm{a}_{22} \mathrm{v}_{2} \in \mathrm{~W}=\left\{\mathrm{av}_{1} / \mathrm{a} \in \mathrm{~F}\right\} \\
\Rightarrow & \mathrm{v}_{2} \mathrm{~T}-\mathrm{a}_{22} \mathrm{v}_{2}=\mathrm{a}_{21} \mathrm{v}_{1} \\
\Rightarrow & \mathrm{v}_{2} \mathrm{~T}=\mathrm{a}_{21} \mathrm{v}_{1}+\mathrm{a}_{22} \mathrm{v}_{2}
\end{aligned}
$$

Similarly $\bar{v}_{\mathrm{i}} \bar{T}=\mathrm{a}_{\mathrm{i} 2} \bar{v}_{2}+\mathrm{a}_{\mathrm{i} 3} \bar{v}_{3}+\cdots---\mathrm{a}_{\mathrm{i} 1} \bar{v}_{\mathrm{i}}$
$\Rightarrow v_{i} T=a_{i 1} v_{1}+a_{i 2} v_{2}+\cdots---+a_{i i} v_{i}$

Thus including $\mathrm{v}_{1} \mathrm{~T}=\lambda_{1} \mathrm{v}_{1}$ we have obtained

$$
\begin{aligned}
& v_{1} T=a_{11} v_{1} \text { where } a_{11}=\lambda_{1}, \\
& v_{2} T=a_{21} v_{1}+a_{22} v_{2} \\
& \vdots \\
& v_{i} T=a_{i 1} v_{1}+a_{i 2} v_{2}+\cdots--+a_{i i} v_{i} \\
& \vdots \\
& v_{n} T=a_{n 1} v_{1}+a_{n 2} v_{2}+\cdots+a_{n n} v_{n}
\end{aligned}
$$

By the definition of the matrix of a linear transformation we see that the matrix of T is

$$
\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \ldots \\
a_{21} & a_{22} & 0 & \ldots
\end{array}\right)
$$

which is triangular
\qquad X \qquad

